Completely positive and copositive matrices and optimization

Bob's birthday conference

The Chinese University of Hong Kong
November 17, 2013

Why CP matrices?

Why CP matrices?

Completely positive matrices (and the related copositive matrices) are of interest in mathematical optimization:

Why CP matrices?

Completely positive matrices (and the related copositive matrices) are of interest in mathematical optimization:
Every nonconvex quadratic optimization problem over the simplex,

$$
\max \left\{x^{\top} Q x \mid e^{T} x=1, x_{i} \geq 0 \quad \forall i\right\}
$$

has an equivalent completely positive formulation (with $J=e e^{T}$):

$$
\max \{\langle Q, X\rangle \mid\langle J, X\rangle=1, X \text { is } C P\} .
$$

Thus a nonconvex NP-hard optimization problem is transformed into a linear problem in matrix variables over a convex cone of matrices, shifting the difficulty of the problem entirely into the cone constraint. This makes understanding the cone crucial for tackling the problem.

CP matrices \& the cp-rank

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
A=B B^{T}, \quad B \geq 0 .
$$

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
\begin{equation*}
A=B B^{T}, \quad B \geq 0 \tag{*}
\end{equation*}
$$

- The minimal number of columns of a B in (*) is cp-rankA.

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
\begin{equation*}
A=B B^{T}, \quad B \geq 0 \tag{*}
\end{equation*}
$$

- The minimal number of columns of a B in (*) is cp-rankA.
- Notation: $\mathcal{C} \mathcal{P}_{n}$ is the set of all $n \times n$ completely positive matrices.

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
\begin{equation*}
A=B B^{T}, \quad B \geq 0 \tag{*}
\end{equation*}
$$

- The minimal number of columns of a B in (*) is cp-rankA.
- Notation: $\mathcal{C P}{ }_{n}$ is the set of all $n \times n$ completely positive matrices.
$\mathcal{C} \mathcal{P}_{n}$ is a closed convex cone.

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
\begin{equation*}
A=B B^{T}, \quad B \geq 0 \tag{*}
\end{equation*}
$$

- The minimal number of columns of a B in (*) is cp-rankA.
- Notation: $\mathcal{C P}{ }_{n}$ is the set of all $n \times n$ completely positive matrices.
$\mathcal{C} \mathcal{P}_{n}$ is a closed convex cone.
Every CP matrix is positive semidefinite and nonnegative (=doubly nonnegative (DNN)).

CP matrices \& the cp-rank

Definitions

- A matrix $A \in \mathbb{R}^{n \times n}$ is completely positive (CP) if $\exists B \in \mathbb{R}^{n \times k}$ s.t.

$$
\begin{equation*}
A=B B^{T}, \quad B \geq 0 \tag{*}
\end{equation*}
$$

- The minimal number of columns of a B in (*) is cp-rankA.
- Notation: $\mathcal{C P}{ }_{n}$ is the set of all $n \times n$ completely positive matrices.
$\mathcal{C} \mathcal{P}_{n}$ is a closed convex cone.
Every CP matrix is positive semidefinite and nonnegative (=doubly nonnegative (DNN)).
The converse holds only for $n \leq 4$.

CP problems

CP problems

Basic Problems

CP problems

Basic Problems

- Identify / characterize CP matrices.

CP problems

Basic Problems

- Identify / characterize CP matrices.
- Compute / estimate cp-ranks.

CP problems

Basic Problems

- Identify / characterize CP matrices.
- Compute / estimate cp-ranks.

Both are open and hard.

Geometric interpretation

Geometric interpretation

A is PSD $\Leftrightarrow A=\left[\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T}\end{array}\right]\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]=\left[\left\langle v_{i}, v_{j}\right\rangle\right]$,
where v_{1}, \ldots, v_{n} are vectors in an m-dimensional Euclidean space $(m=\operatorname{rank} A)$.

Geometric interpretation

A is PSD $\Leftrightarrow A=\left[\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T}\end{array}\right]\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]=\left[\left\langle v_{i}, v_{j}\right\rangle\right]$,
where v_{1}, \ldots, v_{n} are vectors in an m-dimensional Euclidean space $(m=\operatorname{rank} A)$.
$A \geq 0 \Leftrightarrow\left\langle v_{i}, v_{j}\right\rangle \geq 0 \forall i, j$, i.e., the angle between v_{i} and v_{j} is $\leq \frac{\pi}{2}$.

Geometric interpretation

A is PSD $\Leftrightarrow A=\left[\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T}\end{array}\right]\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]=\left[\left\langle v_{i}, v_{j}\right\rangle\right]$,
where v_{1}, \ldots, v_{n} are vectors in an m-dimensional Euclidean space $(m=\operatorname{rank} A)$.
$A \geq 0 \Leftrightarrow\left\langle v_{i}, v_{j}\right\rangle \geq 0 \forall i, j$, i.e., the angle between v_{i} and v_{j} is $\leq \frac{\pi}{2}$.
A is $\mathrm{CP} \Leftrightarrow v_{1}, \ldots, v_{n}$ can be isometrically embedded in the nonnegative orthant of some k-dimensional Euclidean space. cp-rank $A=$ minimal such k.

Using the geometric approach

Using the geometric approach

Using the geometric approach

Using the geometric approach

Using the geometric approach

Using the geometric approach

Proves:

Theorem

A is DNN and $\operatorname{rank} A=2 \Rightarrow A$ is CP and cp-rank $A=2$.

Geometric visualisation

Geometric visualisation

4 unit vectors in \mathbb{R}^{3} :

Geometric visualisation

4 unit vectors in \mathbb{R}^{3} :

Geometric visualisation

4 unit vectors in \mathbb{R}^{3} :

Pippal (2013)

The combinatorial approach

The combinatorial approach

Many of the known results on CP matrices and the cp-rank are graph-based.

The combinatorial approach

Many of the known results on CP matrices and the cp-rank are graph-based.

Definition

$\forall A \in \mathbb{R}^{n \times n}$ symmetric, the graph of $A, G(A)$, is the simple undirected graph with vertices $\{1, \ldots, n\}$, where $i j$ is an edge if and only if $a_{j i}=a_{i j} \neq 0$.

The combinatorial approach

Many of the known results on CP matrices and the cp-rank are graph-based.

Definition

$\forall A \in \mathbb{R}^{n \times n}$ symmetric, the graph of $A, G(A)$, is the simple undirected graph with vertices $\{1, \ldots, n\}$, where $i j$ is an edge if and only if $a_{j i}=a_{i j} \neq 0$.
$A=B B^{T}, B=\left[\begin{array}{lll}b_{1} & \ldots & b_{m}\end{array}\right] \Leftrightarrow A=\sum b_{i} b_{i}^{T}$.

The combinatorial approach

Many of the known results on CP matrices and the cp-rank are graph-based.

Definition

$\forall A \in \mathbb{R}^{n \times n}$ symmetric, the graph of $A, G(A)$, is the simple undirected graph with vertices $\{1, \ldots, n\}$, where $i j$ is an edge if and only if $a_{j i}=a_{i j} \neq 0$.
$A=B B^{T}, B=\left[\begin{array}{lll}b_{1} & \ldots & b_{m}\end{array}\right] \Leftrightarrow A=\sum b_{i} b_{i}^{T}$.
$B \geq 0 \Rightarrow$ no cancellations in the sum

The combinatorial approach

Many of the known results on CP matrices and the cp-rank are graph-based.

Definition

$\forall A \in \mathbb{R}^{n \times n}$ symmetric, the graph of $A, G(A)$, is the simple undirected graph with vertices $\{1, \ldots, n\}$, where $i j$ is an edge if and only if $a_{j i}=a_{i j} \neq 0$.
$A=B B^{T}, B=\left[\begin{array}{lll}b_{1} & \ldots & b_{m}\end{array}\right] \Leftrightarrow A=\sum b_{i} b_{i}^{T}$.
$B \geq 0 \Rightarrow$ no cancellations in the sum
$\Rightarrow \forall i, \operatorname{supp} b_{i}$ is a clique in $G(A)$.

Using the combinatorial approach

Using the combinatorial approach

Definitions

Using the combinatorial approach

Definitions

A graph G is completely positive (CP) if A is $D N N \& G(A)=G \Rightarrow A$ is CP.

Using the combinatorial approach

Definitions

A graph G is completely positive (CP) if A is $D N N \& G(A)=G \Rightarrow A$ is CP.

Theorem

A graph G is $C P \Leftrightarrow G$ contains no long (length ≥ 5) odd cycle.
Berman \& Kogan (1993), Ando (1991). Also: Drew \& Johnson (1996) Used in proof: Berman \& Hershkowitz (1987), Berman \& Grone (1988)

Using the combinatorial approach

Definitions
 A graph G is completely positive (CP) if A is $D N N \& G(A)=G \Rightarrow A$ is CP.

Theorem
 A graph G is $C P \Leftrightarrow G$ contains no long (length ≥ 5) odd cycle.

Berman \& Kogan (1993), Ando (1991). Also: Drew \& Johnson (1996) Used in proof: Berman \& Hershkowitz (1987), Berman \& Grone (1988)

The key: A No Long Odd Cycle graph looks like that:

Each block is bipartite

Each block is bipartite / has at most 4 vertices

Each block is bipartite / has at most 4 vertices / consists of triangles with a common base.

Each block is bipartite / has at most 4 vertices / consists of triangles with a common base.

Using the combinatorial approach (2)

Using the combinatorial approach (2)

Note: For every CP matrix, cp-rank $A \geq \operatorname{rank} A$.

Using the combinatorial approach (2)

Note: For every CP matrix, cp-rank $A \geq \operatorname{rank} A$.

Theorem

Every CP matrix A with $G(A)=G$ satisfies cp-rank $A=\operatorname{rank} A$ if and only if G contains no even cycle, and no triangle-free graph with more edges than vertices.

Shaked-Monderer (2001)

Using the combinatorial approach (2)

Note: For every CP matrix, cp-rank $A \geq \operatorname{rank} A$.

Theorem

Every CP matrix A with $G(A)=G$ satisfies cp-rank $A=\operatorname{rank} A$ if and only if G contains no even cycle, and no triangle-free graph with more edges than vertices.

Shaked-Monderer (2001)
The key: Such a graph looks like that:

Each block is an edge

Each block is an edge / an odd cycle;

Each block is an edge / an odd cycle; at most one odd cycle is long.

Upper bounds on the cp-rank

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4: A \in \mathcal{C P}{ }_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4: A \in \mathcal{C P}{ }_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp!

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$.

Hannah \& Laffey (1983); Barioli \& Berman (2003)

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$. Hannah \& Laffey (1983); Barioli \& Berman (2003)
Sharp?

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$. Hannah \& Laffey (1983); Barioli \& Berman (2003)
Sharp? Not for $3 \leq n \leq 4$. Maybe for $n \geq 5$?

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$. Hannah \& Laffey (1983); Barioli \& Berman (2003)
Sharp? Not for $3 \leq n \leq 4$. Maybe for $n \geq 5$?
The case $n \geq 5$ is a totally different:

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$. Hannah \& Laffey (1983); Barioli \& Berman (2003)
Sharp? Not for $3 \leq n \leq 4$. Maybe for $n \geq 5$?
The case $n \geq 5$ is a totally different:
Difficulty in identifying CP matrices;

Upper bounds on the cp-rank

Problem

Find a (sharp) upper bound on the cp-ranks of matrices in $\mathcal{C} \mathcal{P}_{n}$.

Known upper bounds

- For $n \leq 4$: $A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq n$.

Maxfield \& Minc (1962)
Sharp! Since cp-rank $A \geq \operatorname{rank} A$.

- $\forall n \geq 2: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\binom{ n+1}{2}-1$. Hannah \& Laffey (1983); Barioli \& Berman (2003)
Sharp? Not for $3 \leq n \leq 4$. Maybe for $n \geq 5$?
The case $n \geq 5$ is a totally different:
Difficulty in identifying CP matrices;
Bound definitely $>n: \forall n \geq 5, \exists A \in \mathcal{C} \mathcal{P}_{n}$ with cp-rank $A=\left\lfloor n^{2} / 4\right\rfloor$.

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or

Drew, Johnson \& Loewy (1994)

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or Drew, Johnson \& Loewy (1994)
- when $G(A)$ has no long odd cycle, or

Drew \& Johnson (1996)

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or Drew, Johnson \& Loewy (1994)
- when $G(A)$ has no long odd cycle, or
- when $M(A)$ is positive semidefinite, or

Drew \& Johnson (1996)
Berman \& S-M (1998)

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or Drew, Johnson \& Loewy (1994)
- when $G(A)$ has no long odd cycle, or
- when $M(A)$ is positive semidefinite, or
- when $n=5$, and A has at least one zero.

Drew \& Johnson (1996)
Berman \& S-M (1998)
Loewy \& Tam (2003)

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or Drew, Johnson \& Loewy (1994)
- when $G(A)$ has no long odd cycle, or
- when $M(A)$ is positive semidefinite, or
- when $n=5$, and A has at least one zero.

Drew \& Johnson (1996)
Berman \& S-M (1998)
Loewy \& Tam (2003) (Here $G(A)$ is the graph of the matrix $A, M(A)$ is the comparison matrix of A).

The DJL conjecture

$\forall n \geq 4: A \in \mathcal{C P} \mathcal{P}_{n} \quad \Rightarrow \quad$ cp-rank $A \leq\left\lfloor n^{2} / 4\right\rfloor$.
Drew, Johnson \& Loewy (1994)
The DJL bound holds for $\boldsymbol{A} \in \mathcal{C} \mathcal{P}_{\boldsymbol{n}}$

- when $G(A)$ is triangle free, or Drew, Johnson \& Loewy (1994)
- when $G(A)$ has no long odd cycle, or
- when $M(A)$ is positive semidefinite, or
- when $n=5$, and A has at least one zero.

Drew \& Johnson (1996)
Berman \& S-M (1998) Loewy \& Tam (2003) (Here $G(A)$ is the graph of the matrix $A, M(A)$ is the comparison matrix of A).

Common thread in most results: deal with matrices on $\partial \mathcal{C} \mathcal{P}_{n}$.

Are we looking under the lamp-post?

Are we looking under the lamp-post?

Long known result

The maximum cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained on $\operatorname{int} \mathcal{C} \mathcal{P}_{n}$.

Are we looking under the lamp-post?

Long known result

The maximum cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained on $\operatorname{int} \mathcal{C} \mathcal{P}_{n}$.

Proof:

Are we looking under the lamp-post?

Long known result

The maximum cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained on $\operatorname{int} \mathcal{C} \mathcal{P}_{n}$.

Proof:

- $A_{m} \rightarrow A \& \forall m A_{m} \in \mathcal{C} \mathcal{P}_{n}$, cp-rank $A_{m} \leq k \Longrightarrow$ cp-rank $A \leq k$.

Are we looking under the lamp-post?

Long known result

The maximum cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained on $\operatorname{int} \mathcal{C} \mathcal{P}_{n}$.

Proof:

- $A_{m} \rightarrow A$ \& $\forall m A_{m} \in \mathcal{C} \mathcal{P}_{n}$, cp-rank $A_{m} \leq k \Longrightarrow \quad$ cp-rank $A \leq k$.
- $A \in \partial \mathcal{C} \mathcal{P}_{n} \quad \Longrightarrow \quad \exists\left(A_{m}\right)_{m=1}^{\infty} \subseteq \operatorname{int} \mathcal{C} \mathcal{P}_{n} \quad$ s.t. $\quad A_{m} \rightarrow A$.

Are we looking under the lamp-post?

Long known result

The maximum cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained on $\operatorname{int} \mathcal{C} \mathcal{P}_{n}$.

Proof:

- $A_{m} \rightarrow A$ \& $\forall m A_{m} \in \mathcal{C} \mathcal{P}_{n}$, cp-rank $A_{m} \leq k \Longrightarrow \quad$ cp-rank $A \leq k$.
- $A \in \partial \mathcal{C} \mathcal{P}_{n} \Longrightarrow \exists\left(A_{m}\right)_{m=1}^{\infty} \subseteq \operatorname{int} \mathcal{C} \mathcal{P}_{n}$ s.t. $A_{m} \rightarrow A$.

Long asked question

Is the maximum also attained on the boundary?

Recent Results

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?
int $\mathcal{C P}{ }_{n}$ and $\partial \mathcal{C} \mathcal{P}_{n}$

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?
int $\mathcal{C} \mathcal{P}_{n}$ and $\partial \mathcal{C} \mathcal{P}_{n}$

- $A \in \operatorname{int} \mathcal{C} \mathcal{P}_{n} \Longleftrightarrow A=B B^{T}, B \geq 0$ has rank $n \&$ a positive column. Dür \& Still (2008), Dickinson (2010)

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?
int $\mathcal{C} \mathcal{P}_{n}$ and $\partial \mathcal{C} \mathcal{P}_{n}$

- $A \in \operatorname{int} \mathcal{C} \mathcal{P}_{n} \Longleftrightarrow A=B B^{T}, B \geq 0$ has rank $n \&$ a positive column. Dür \& Still (2008), Dickinson (2010)
- $A \in \partial \mathcal{C} \mathcal{P}_{n} \Longleftrightarrow A \perp X$ for a copositive X.

Recent Results

Theorem 1

$\forall n \geq 2$, the maximum of the cp-rank on $\mathcal{C} \mathcal{P}_{n}$ is attained at a nonsingular matrix on $\partial \mathcal{C} \mathcal{P}_{n}$.

Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?
int $\mathcal{C P}{ }_{n}$ and $\partial \mathcal{C} \mathcal{P}_{n}$

- $A \in \operatorname{int} \mathcal{C} \mathcal{P}_{n} \Longleftrightarrow A=B B^{T}, B \geq 0$ has rank $n \&$ a positive column. Dür \& Still (2008), Dickinson (2010)
- $A \in \partial \mathcal{C} \mathcal{P}_{n} \Longleftrightarrow A \perp X$ for a copositive X. (w.r.t. $\langle A, X\rangle=\operatorname{trace}\left(A X^{\top}\right)$.)

COP matrices

COP matrices

Definitions

COP matrices

Definitions

- A symmetric $A \in \mathbb{R}^{n \times n}$ is copositive (COP) if $x^{\top} A x \geq 0 \forall x \in \mathbb{R}_{+}^{n}$.

COP matrices

Definitions

- A symmetric $A \in \mathbb{R}^{n \times n}$ is copositive (COP) if $x^{\top} A x \geq 0 \forall x \in \mathbb{R}_{+}^{n}$.
- Notation: $\mathcal{C O} \mathcal{P}_{n}$ is the set of all $n \times n$ copositive matrices.

COP matrices

Definitions

- A symmetric $A \in \mathbb{R}^{n \times n}$ is copositive (COP) if $x^{\top} A x \geq 0 \forall x \in \mathbb{R}_{+}^{n}$.
- Notation: $\mathcal{C O} \mathcal{P}_{n}$ is the set of all $n \times n$ copositive matrices.

Every Positive semidefinite matrix, and every nonnegative matrix, is COP. Sums of such matrices also.

COP matrices

Definitions

- A symmetric $A \in \mathbb{R}^{n \times n}$ is copositive (COP) if $x^{T} A x \geq 0 \forall x \in \mathbb{R}_{+}^{n}$.
- Notation: $\mathcal{C O} \mathcal{P}_{n}$ is the set of all $n \times n$ copositive matrices.

Every Positive semidefinite matrix, and every nonnegative matrix, is COP. Sums of such matrices also.
For $n \geq 5$ there are also others. Example: the Horn matrix
$H=\left[\begin{array}{rrrrr}1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1\end{array}\right]$ and more.

COP matrices

Definitions

- A symmetric $A \in \mathbb{R}^{n \times n}$ is copositive (COP) if $x^{T} A x \geq 0 \forall x \in \mathbb{R}_{+}^{n}$.
- Notation: $\mathcal{C O} \mathcal{P}_{n}$ is the set of all $n \times n$ copositive matrices.

Every Positive semidefinite matrix, and every nonnegative matrix, is COP. Sums of such matrices also.
For $n \geq 5$ there are also others. Example: the Horn matrix
$H=\left[\begin{array}{rrrrr}1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1\end{array}\right]$ and more.
$\mathcal{C O P}{ }_{n}$ is a closed convex cone.

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$
$\mathcal{C} \mathcal{P}_{n}, \mathcal{C O} \mathcal{P}_{n}$

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C P}{ }_{n}, \mathcal{C O} \mathcal{P}_{n}$

- $\mathcal{C} \mathcal{P}_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C} \mathcal{P}_{n}, \mathcal{C O} \mathcal{P}_{n}$

- $\mathcal{C} \mathcal{P}_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.
- $\mathcal{C P}_{n}=\left\{A \mid A=A^{T} \&\langle A, X\rangle \geq 0 \forall X \in \mathcal{C O} \mathcal{P}_{n}\right\}$,

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C} \mathcal{P}_{n}, \mathcal{C O} \mathcal{P}_{n}$

- $\mathcal{C P}{ }_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.
- $\mathcal{C} \mathcal{P}_{n}=\left\{A \mid A=A^{T} \&\langle A, X\rangle \geq 0 \forall X \in \mathcal{C O} \mathcal{P}_{n}\right\}$, and vice versa.

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C P}{ }_{n}, \mathcal{C O P}_{n}$

- $\mathcal{C P}{ }_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.
- $\mathcal{C} \mathcal{P}_{n}=\left\{A \mid A=A^{T} \&\langle A, X\rangle \geq 0 \forall X \in \mathcal{C O} \mathcal{P}_{n}\right\}$, and vice versa. ($\mathcal{C P}{ }_{n}$ and $\mathcal{C O P} \mathcal{P}_{n}$ are dual cones).

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C} \mathcal{P}_{n}, \mathcal{C O} \mathcal{P}_{n}$

- $\mathcal{C} \mathcal{P}_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.
- $\mathcal{C P}{ }_{n}=\left\{A \mid A=A^{T} \&\langle A, X\rangle \geq 0 \forall X \in \mathcal{C O} \mathcal{P}_{n}\right\}$, and vice versa. ($\mathcal{C P}{ }_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$ are dual cones).
- For $A \in \mathcal{C} \mathcal{P}_{n}: A \in \partial \mathcal{C} \mathcal{P}_{n} \Leftrightarrow\langle A, X\rangle=0$ for some $X \in \operatorname{ext}\left(\mathcal{C O} \mathcal{P}_{n}\right)$.

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$

$\mathcal{C} \mathcal{P}_{n}, \mathcal{C O} \mathcal{P}_{n}$

- $\mathcal{C} \mathcal{P}_{n} \& \mathcal{C O} \mathcal{P}_{n}$ are convex cones with non-empty interiors.
- $\mathcal{C P}{ }_{n}=\left\{A \mid A=A^{T} \&\langle A, X\rangle \geq 0 \forall X \in \mathcal{C O} \mathcal{P}_{n}\right\}$, and vice versa. ($\mathcal{C P}{ }_{n}$ and $\mathcal{C O} \mathcal{P}_{n}$ are dual cones).
- For $A \in \mathcal{C} \mathcal{P}_{n}: A \in \partial \mathcal{C} \mathcal{P}_{n} \Leftrightarrow\langle A, X\rangle=0$ for some $X \in \operatorname{ext}\left(\mathcal{C O} \mathcal{P}_{n}\right)$.

The cones $\mathcal{C} \mathcal{P}_{n}$ and $\mathcal{C O} \mathcal{P}_{n}, n=2$

Dickinson (2011)

COP problems

Basic Problems

COP problems

Basic Problems

- Identify / characterize COP matrices.

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O} \mathcal{P}_{n}$.

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O} \mathcal{P}_{n}$.

Both are open and hard.

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O P}{ }_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O P}{ }_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

- PSD matrices of rank 1 ,

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O P}{ }_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

- PSD matrices of rank 1 ,
- "elementary" symmetric $(0,1)$-matrices,

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O} \mathcal{P}_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

- PSD matrices of rank 1 ,
- "elementary" symmetric $(0,1)$-matrices,
- $n=5$: the Horn matrix,

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O} \mathcal{P}_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

- PSD matrices of rank 1 ,
- "elementary" symmetric $(0,1)$-matrices,
- $n=5$: the Horn matrix, Hall \& Newman (1963) $\forall n$: certain $(1,-1)$ - and $(1,0,-1)$-matrices,

Haynsworth \& Hoffman (1969), Hoffman \& Pereira (1973)

COP problems

Basic Problems

- Identify / characterize COP matrices.
- Charachterize extreme rays of $\mathcal{C O P}{ }_{n}$.

Both are open and hard.

Known extreme rays of $\mathcal{C O} \mathcal{P}_{n}$

- PSD matrices of rank 1 ,
- "elementary" symmetric $(0,1)$-matrices,
- $n=5$: the Horn matrix, Hall \& Newman (1963) $\forall n$: certain $(1,-1)$ - and $(1,0,-1)$-matrices, Haynsworth \& Hoffman (1969), Hoffman \& Pereira (1973)
- $n=5$: Hildebrand matrices Hildebrand (2012)

New upper bounds

New upper bounds

The DJL conjecture holds for $n=5$:

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Used in the proof:

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Used in the proof: Theorem 1,

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Used in the proof: Theorem 1, Loewy \& Tam's result,

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Used in the proof: Theorem 1, Loewy \& Tam's result, Hildebrand's characterization;

New upper bounds

The DJL conjecture holds for $n=5$:
Theorem 2
$\forall A \in \mathcal{C} \mathcal{P}_{5}$, cp-rank $A \leq\left\lfloor 5^{2} / 4\right\rfloor=6$ (sharp).
Shaked-Monderer, Bomze, Jarre \& Schachinger (2013)

Used in the proof: Theorem 1, Loewy \& Tam's result, Hildebrand's characterization; Also: graph theoretic result on the cp-rank.

New upper bounds contd.

New upper bounds contd.

The Barioli-Berman bound is not sharp for $n \geq 5$:

New upper bounds contd.

The Barioli-Berman bound is not sharp for $n \geq 5$:
Theorem 3
$\forall A \in \mathcal{C} \mathcal{P}_{n}, n \geq 5$, cp-rank $A \leq\binom{ n+1}{2}-4$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)

New upper bounds contd.

The Barioli-Berman bound is not sharp for $n \geq 5$:
Theorem 3
$\forall A \in \mathcal{C} \mathcal{P}_{n}, n \geq 5$, cp-rank $A \leq\binom{ n+1}{2}-4$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)
Used in the proof:

New upper bounds contd.

The Barioli-Berman bound is not sharp for $n \geq 5$:
Theorem 3
$\forall A \in \mathcal{C} \mathcal{P}_{n}, n \geq 5$, cp-rank $A \leq\binom{ n+1}{2}-4$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?) Used in the proof:

Theorem 4

$\forall A \in \mathcal{C} \mathcal{P}_{n}, B \in \mathcal{C O P}{ }_{n}$ s.t. $A \perp B$, every column of A is orthogonal to the corresponding column of B.

Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)

New upper bounds contd.

The Barioli-Berman bound is not sharp for $n \geq 5$:
Theorem 3
$\forall A \in \mathcal{C} \mathcal{P}_{n}, n \geq 5$, cp-rank $A \leq\binom{ n+1}{2}-4$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?) Used in the proof:

Theorem 4

$\forall A \in \mathcal{C} \mathcal{P}_{n}, B \in \mathcal{C O P}{ }_{n}$ s.t. $A \perp B$, every column of A is orthogonal to the corresponding column of B.

Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)

New upper bounds contd.

New upper bounds contd.

Slight improvement for $n=6$:

New upper bounds contd.

Slight improvement for $n=6$:
Theorem 5
$\forall A \in \mathcal{C} \mathcal{P}_{6}$, cp-rank $A \leq 15=\binom{6}{2}$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)

New upper bounds contd.

Slight improvement for $n=6$:
Theorem 5
$\forall A \in \mathcal{C} \mathcal{P}_{6}$, cp-rank $A \leq 15=\binom{6}{2}$.
Shaked-Monderer, Berman, Bomze, Jarre \& Schachinger (201?)

Comments

Comments

Theorem 3 bound definitely not sharp for $n=5,6$, most probably not sharp for $n>6$.

Comments

Theorem 3 bound definitely not sharp for $n=5,6$, most probably not sharp for $n>6$.

Theorem 5 bound may not be sharp.

Copositive optimization

Burer has shown that every optimization problem with quadratic objective function, linear constraints, and binary variables can be equivalently written as a linear problem over the completely positive cone. This includes many NP-hard combinatorial problems. The complexity of these problems is then shifted entirely into the cone constraint. In fact, even checking whether a given matrix is completely positive is an NP-hard problem.
Replacing the completely positive cone by a tractable cone like the cone of doubly nonnegative matrices results in a relaxation of the problem providing a bound on its optimal value. For matrices of order $n \leq 4$, the doubly nonnegative cone equals the completely positive which means that the relaxation is exact. For order $n \geq 5$, however, there are doubly nonnegative matrices that are not completely positive.

Copositive cuts

Thus, in general, an optimal solution of the doubly nonnegative relaxation is not completely positive. Therefore, it is desirable to add a cut, i.e., a linear constraint that separates the obtained solution from the completely positive cone, in order to get a tighter relaxation yielding a better bound.

In [B, Duer, Shaked-Monderer and Witzel] we construct cutting planes to separate doubly nonnegative matrices which are not completely positive from the completely positive cone. In other words, given $X \in \mathcal{D N} \mathcal{N}_{n} \backslash \mathcal{C} \mathcal{P}_{n}$, we aim to find a $K \in \mathcal{C O} \mathcal{P}_{n}$ such that $\langle K, X\rangle<0$.

Copositive cuts contd.

Copositive cuts contd.

Generating copositive cuts

The basic idea of our approach is stated in the following theorems:
Theorem
$X \in \mathcal{C P}{ }_{n} \Leftrightarrow \exists K \in \mathcal{C O} \mathcal{P}_{n}$ such that $K \circ X \notin \mathcal{C O} \mathcal{P}_{n}$.

Theorem

Let $X \in \mathcal{D N N}_{n} \backslash \mathcal{C} \mathcal{P}_{n}$, and let $K \in \mathcal{C O P}{ }_{n}$ be such that $K \circ X \notin \mathcal{C O} \mathcal{P}_{n}$. Then for every nonnegative $u \in \mathbb{R}^{n}$ such that $u^{T}(K \circ X) u<0$, the copositive matrix $K \circ u u^{T}$ is a cut separating X from $\mathcal{C P}{ }_{n}$.

Proof.

$$
\left\langle K \circ u u^{T}, X\right\rangle=u^{T}(K \circ X) u<0 .
$$

Generating copositive cuts contd.

If $K \circ X \notin \mathcal{C O} \mathcal{P}_{n}$, as assumed in the theorem, then by Kaplan’s copositivity characterization, $K \circ X$ has a principal submatrix having a positive eigenvector corresponding to a negative eigenvalue. This shows that such u can be chosen as this eigenvector with zeros added to get a vector in \mathbb{R}^{n}.

The following property is obvious but useful, since it allows to construct cutting planes based on submatrices instead of the entire matrix.

Lemma

Assume that $K \in \mathcal{C O} \mathcal{P}_{n}$ is a copositive matrix that separates a matrix X from $\mathcal{C} \mathcal{P}_{n}$. If $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{n \times p}$ are arbitrary matrices with B symmetric, then the copositive matrix

$$
\left[\begin{array}{cc}
K & 0 \\
0 & 0
\end{array}\right] \text { is a cut that separates }\left[\begin{array}{cc}
X & A \\
A^{T} & B
\end{array}\right] \text { from } \mathcal{C} \mathcal{P}_{n+p} .
$$

Generating copositive cuts contd.

We assume that the matrices that we want to separate from the completely positive cone are irreducible, since any reducible symmetric matrix can be written as a block diagonal matrix and then the problem can be split into subproblems of smaller dimension where each of the diagonal blocks is considered separately.

Note that for a cut it is desirable to have an extreme copositive matrix K rather than just a copositive K, since an extremal matrix will provide a supporting hyperplane and therefore a better (deeper) cut.

Separating a triangle-free doubly nonnegative matrix

We assume that our matrix $X \in \mathcal{D N} \mathcal{N}_{n}$ has $X_{i i} \neq 0$, otherwise the corresponding row and column would be zero, and we can base our cut on a submatrix with no zero diagonal elements. Furthermore, by applying a suitable scaling if necessary we can assume that $\operatorname{diag}(X)=e$.

Now suppose that an irreducible $X \in \mathcal{D \mathcal { N }} \mathcal{N}_{n}$ has a triangle-free graph $G(X)$.
Then we have
$X=I+C, \quad \operatorname{diag}(X)=e, \quad G(X)$ is connected and triangle-free.
The matrix C has zero diagonal and $G(C)=G(X)$.

Separating a triangle-free doubly nonnegative matrix

We now characterize complete positivity of X in terms of the spectral radius of C.

Lemma

A matrix $X \in \mathcal{D N N}_{n}$ of the form (1) is completely positive if and only if the spectral radius ρ of C fulfills $\rho \leq 1$.

Proof.

Since $G(X)$ is triangle-free, $X \in \mathcal{C O} P_{n}$ if and only if its comparison matrix $M(X)$ is an M-matrix, which means that $M(X)$ can be written as $M(X)=\alpha I-P$ with $P \geq 0$ and $\alpha \geq \rho(P)$. In our case, we have

$$
M(X)=I-C,
$$

which immediately gives the result.

Separating a triangle-free doubly nonnegative matrix

For the separation of a doubly nonnegative matrix in the form (1) which is not completely positive from $\mathcal{C} \mathcal{P}_{n}$, we will use a $\{-1,0,1\}$-matrix: Given a triangle-free graph G, let A be defined by:

$$
A_{i j}= \begin{cases}-1 & \text { if }\{i, j\} \text { is an edge of } G, \tag{2}\\ +1 & \text { if the distance between } i \text { and } j \text { in } G \text { is } 2, \\ 0 & \text { otherwise. }\end{cases}
$$

We call this matrix the Hoffman-Pereira matrix corresponding to G. By [Hoffman and Pereira (1973)] the matrix A is copositive whenever G is triangle-free. If the diameter of G is 2 , then the Hoffman-Pereira matrix does not have zero entries, and is extreme. This is the case for $n=5$, and A is then the Horn matrix.

Separating a triangle-free doubly nonnegative matrix

Theorem
Let $X \in \mathcal{D N N}_{n} \backslash \mathcal{C P}{ }_{n}$ be of the form (1), let u be the Perron vector of C, and let A be the Hoffman-Pereira matrix corresponding to $G(X)$. Then
(a) $u>0$ and $u^{\top} M(X) u<0$,
(b) $M(X)=X \circ A$ and

$$
K:=A \circ u u^{T}
$$

is a copositive matrix separating X from $\mathcal{C P}{ }_{n}$.

Separating a triangle-free doubly nonnegative matrix

Proof.

(a) The assumption that $G(X)$ is connected means that X, and therefore C, is irreducible, which implies that $u>0$ by the Perron-Frobenius Theorem. Also,

$$
u^{T} M(X) u=u^{T} u-u^{T} C u=u^{T} u(1-\rho)<0
$$

(b) It is easy to see that $M(X)=X \circ A$, and we have

$$
\left\langle X, A \circ u u^{T}\right\rangle=\left\langle X \circ A, u u^{T}\right\rangle=u^{T}(X \circ A) u=u^{T} M(X) u<0
$$

Since $u>0$ and A is copositive, the matrix $K:=A \circ u u^{T}$ is copositive, which by the above is a cut that separates X from $\mathcal{C} \mathcal{P}_{n}$.

Note that since $u>0$, the cut matrix K is extreme if and only if the Hoffman-Pereira matrix A is extreme. This happens, e.g., when the graph $G(X)$ is an odd cycle.

Application to the stable set problem

We illustrate the separation procedure by applying it to some instances of the stable set problem.

As shown in [de Klerk and Pasechnik (2002)], the problem of computing the stability number α of a graph G can be stated as a completely positive optimization problem:

$$
\begin{equation*}
\alpha=\max \left\{\langle E, X\rangle:\langle I, X\rangle=1,\left\langle A_{G}, X\right\rangle=0, X \in \mathcal{C} \mathcal{P}_{n}\right\} \tag{3}
\end{equation*}
$$

where A_{G} denotes the adjacency matrix of G. Replacing $\mathcal{C} \mathcal{P}_{n}$ by $\mathcal{D N} \mathcal{N}_{n}$ results in a relaxation of the problem providing a bound on α. This bound ϑ^{\prime} is called Lovász-Schrijver bound:

$$
\begin{equation*}
\vartheta^{\prime}=\max \left\{\langle E, X\rangle:\langle I, X\rangle=1,\left\langle A_{G}, X\right\rangle=0, X \in \mathcal{D N N}_{n}\right\} . \tag{4}
\end{equation*}
$$

We consider some instances for which $\vartheta^{\prime} \neq \alpha$ and aim to get better bounds by adding cuts to the doubly nonnegative relaxation, using our approach.

Application to the stable set problem contd.

Let \bar{X} denote the optimal solution we get by solving (4). If $\vartheta^{\prime} \neq \alpha$, then $\bar{X} \in \mathcal{D N} \mathcal{N}_{n} \backslash \mathcal{C} \mathcal{P}_{n}$. We want to find cuts that separate \bar{X} from the feasible set of (3). If $G(\bar{X})$ is triangle-free, we can separate \bar{X} from $\mathcal{C} \mathcal{P}_{n}$. Otherwise, we look for a principal submatrix whose graph is triangle-free and its comparison matrix is not positive semidefinite, construct a cut for this submatrix.

Application to the stable set problem contd.

Let Y denote such a submatrix. In general, $\operatorname{diag}(Y) \neq e$ as in (1). Therefore, we consider the scaled matrix $D Y D$, where D is a diagonal matrix with $D_{i i}=\frac{1}{\sqrt{Y_{i i}}}$. Since Y is a doubly nonnegative matrix having a triangle-free graph, the same holds for $D Y D$. Furthermore, $D Y D$ can be written as $D Y D=I+C$, where C is a matrix with zero diagonal and $G(C)$ a triangle-free graph. Let ρ denote the spectral radius of C and let u be the eigenvector of C corresponding to the eigenvalue ρ. Furthermore, let A be If $\rho>1$, then we have

$$
0\rangle\left\langle A \circ u u^{T}, D Y D\right\rangle=\left\langle D\left(A \circ u u^{T}\right) D, Y\right\rangle .
$$

Therefore, $D\left(A \circ u u^{T}\right) D$ defines a cut that separates Y from the completely positive cone.

Numerical results for some stable set problems

As test instances, we consider the 5-cycle C_{5} and the graphs G_{8}, G_{11}, G_{14} and G_{17} from [Pena, Vera and Zuluaga (2007)].
In each case we determine all submatrices as described above. It turns out that for these instances the biggest order of such a submatrix is 5×5. The matrix A we use is therefore the Horn matrix. We then solve the doubly nonnegative relaxation after adding each of these cuts and after adding all computed cuts. The results are shown in the Table below. We denote by $\vartheta_{\min }^{K}$ and $\vartheta_{\max }^{K}$ the minimal respectively maximal bound we get by adding a single cut to the doubly nonnegative relaxation (4), and $\vartheta_{\mathrm{all}}^{K}$ denotes the bound we get after adding all computed cuts. The last column indicates the reduction of the optimality gap $\vartheta^{\prime}-\alpha$ when all cuts are added.

Numerical results for some stable set problems

Graph	α	ϑ^{\prime}	$\vartheta_{\min }^{K}$	$\vartheta_{\max }^{K}$	$\vartheta_{\text {all }}^{K}$	\# cuts	reduction
C_{5}	2	2.236	2.0000	2.0000	2.0000	1	100%
G_{8}	3	3.468	3.3992	3.3992	3.2163	4	54%
G_{11}	4	4.694	4.6273	4.6672	4.4307	10	38%
G_{14}	5	5.916	5.8533	5.8977	5.6460	20	29%
G_{17}	6	7.134	7.0745	7.1227	6.8615	35	24%

Table : Results on different stable set problems

Happy Birthday Bob!

Happy Birthday Bob!

Based on:

N. Shaked-Monderer, I. M. Bomze, F. Jarre and W. Schachinger, On the cp-rank and the minimal cp factorization. SIAM Journal on Matrix Analysis and Applications, 34(2) (2013), pp. 355-368.
N. Shaked-Monderer, A. Berman, I. M. Bomze, F. Jarre and W. Schachinger, New results on the cp rank and related properties of co(mpletely)positive matrices.
http://arxiv.org/abs/1305.0737
A. Berman, M. Dür, N. Shaked-Monderer and J. Witzel, Cutting planes for semidefinite relaxations based on triangle-free subgraphs.

References

围 Abraham Berman and Robert J．Plemmons，Nonnegative Matrices in the Mathematical Sciences．SIAM Classics in Applied Mathematics，SIAM 1994.
雷 Abraham Berman and Naomi Shaked－Monderer，Completely positive matrices．World Scientific Publishing， 2003.

圃 Immanuel M．Bomze，Florian Frommlet，and Marco Locatelli， Copositivity cuts for improving SDP bounds on the clique number． Mathematical Programming 124 （2010），13－32．
围 Immanuel M．Bomze，Marco Locatelli，and Fabio Tardella，New and old bounds for standard quadratic optimization：dominance， equivalence and incomparability．Mathematical Programming 115 （2008），31－64．
（ Samuel Burer，On the copositive representation of binary and continuous nonconvex quadratic programs．Mathematical Programming 120 （2009），479－495．

References

目 Samuel Burer, Kurt Anstreicher, and Mirjam Dür, The difference between 5×5 doubly nonnegative and completely positive matrices. Linear Algebra and its Applications 431 (2009),
1539-1552.
Samuel Burer and Hongbo Dong, Separation and relaxation for cones of quadratic forms. Mathematical Programming 137 (2013), 343-370.
围 Richard W. Cottle, George J. Habetler and Carlton E. Lemke, On classes of copositive matrices, Linear Algebra and its Applications 3 (1970), 295-310.
Peter J.C. Dickinson and Luuk Gijben, On the computational complexity of membership problems for the completely positive cone and its dual. Preprint. Online at

```
http://www.optimization-online.org/DB_HTML/2011/
```

05/3041.html.

References

固 Hongbo Dong and Kurt Anstreicher，Separating doubly nonnegative and completely positive matrices．Mathematical Programming 137 （2013），131－153．
围 John H．Drew，Charles R．Johnson and Raphael Loewy， Completely positive matrices associated with M－matrices．Linear and Multilinear Algebra 37 （1994），303－310．
固 Karl－Peter Hadeler，On copositive matrices．Linear Algebra and its Applications 49 （1983），79－89．
國 Emily Haynsworth and Alan J．Hoffman，Two remarks on copositive matrices．Linear Algebra and its Applications 2 （1969），387－392．
Roland Hildebrand，The extreme rays of the 5×5 copositive cone． Linear Algebra and its Applications 437 （2012），1538－1547．

E Alan J．Hoffman and Francisco Pereira，On copositive matrices with $-1,0,1$ entries．Journal of Combinatorial Theory（A） 14 （1973），302－309．

References

E－Wilfred Kaplan，A test for copositive matrices．Linear Algebra and its Applications 313 （2000），203－206．
Etienne de Klerk and Dmitrii V．Pasechnik，Approximation of the stability number of a graph via copositive programming．SIAM Journal on Optimization 12 （2002），875－892．
嗇 Javier Peña，Juan Vera and Luis F．Zuluaga，Computing the stability number of a graph via linear and semidefinite programming．SIAM Journal on Optimization 18 （2007），87－105．

圊 Julia Sponsel and Mirjam Dür，Factorization and cutting planes for completely positive matrices by copositive projection．Mathematical Programming，in print．DOI：10．1007／s10107－012－0601－4．
目 Hannu Väliaho，Criteria for copositive matrices．Linear Algebra and its Applications 81 （1986），19－34．

